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Localized vibrations and standing waves in anharmonic lattices
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A sequence of nonlinear, time-dependent second order differential equations describing the motion of an
infinite one-dimensional periodic lattice of arbitrary anharmonicity is considered. It is converted to an equiva-
lent time-independent integrodifferential system, solved for all localized vibrational modes and standing
waves. As illustrated by several examples this approach provides an accurate and efficient computational tool.
An existence criterion to be satisfied by the potential is worked out for the considered vibrational modes.
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PACS number~s!: 03.201i, 63.20.Pw, 63.20.Ry
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I. INTRODUCTION

Unlike a harmonic, spatially periodic lattice, an anha
monic one can sustain breathers, that is, time-periodic,
tially localized vibrational modes even without broken pe
odicity. Breathers and standing waves experience curren
budding interest because they are believed to be instrume
in energy localization or equipartition and heat transfer@1–
4#. The problem has been mostly tackled from a class
point of view but a quantum mechanical treatment has a
been published@5#.

As the KAM theorem is ill suited here because it produc
many, rather than single, time period solutions, early
tempts have resorted to approximate expansions@6,7#. Sig-
nificant progress was achieved when the existence of bre
ers could be proved@8# in the uncoupled oscillator limit and
the method was turned into a practical tool@9#. However, the
problem of the existence of breathers remains unsolve
the general case, i.e., for plenty of models where no
coupled oscillator limit is available.

The method presented here affords the determinatio
all breathers and standing waves for the most general an
monic potential. The key point is to work out the restori
force at each site as a function of the displacement at this
only, which means that integrable modes of the anharmo
model are achieved in this way. Not only does this prov
the frequency and the vibrational amplitude at every site
all integrable breathers and standing waves but it also
ables us to work out an existence condition to be obeyed
the potential for these vibrational modes to arise.

II. THE METHOD

Let us consider an infinite chain of oscillators coupled
a pair potentialV5( iW(ui ,ui 11) whereui designates the
displacement of sitei and i takes all positive and negativ
integer values.W(ui ,ui 11) is assumed to be symmetric wit
respect toui and ui 11 but is otherwise an arbitrary anha
monic function. The equations of motion read

d2ui

dt2
52

]V

]ui
5 f ~ui 21 ,ui ,ui 11!, ~1!
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where t stands for time. Breathers and standing waves
characterized respectively byui→0, ;t for i→` and
ui 1p(t)5ui(t), ; i ,t where the integerp denotes the
wave-length.W(ui ,ui 11) is chosen so thatf (x,y,z) has one
equilibrium position at x5y5z50, which entails that
f (0,0,0)50. The vibrational amplitude of oscillatori is as-
signed toai

1.0, ai
2,0, i.e., the velocitydui /dt vanishes

whenui reaches the valuesai
6 . This work is concerned with

all vibrational modes, such thatui50, ui5ai
1, andui5ai

2

at t50, t5T1.0 and t5T2,0 for every i , respectively.
Equation ~1! is time reversible, i.e., neithert nor dui /dt
appear explicitly therein. Consequentlyui(2T62t)
5ui(t), ; i ,t. It suffices thence to confine oneself to th
rangeT2,t,T1. As the lattice is periodic,f (x,y,z) does
not exhibit any expliciti dependence. Iff (x,y,z) were linear
in x,y,z, thanks to the Bloch-Floquet theorem the relati
ui 11(t)5rui(t) would hold for anyt wherer is generally a
complex number. Thusui 11 can be expressed as a functio
of ui by dropping anyt dependence. The present work e
tends this result to the nonlinear case by looking for
unknown functiongi defined so thatui 115gi(ui). The main
difference with the linear case is thatgi depends explicitly on
i , unlike the Bloch phase shiftr , even though the lattice is
periodic but the following analysis is valid for a nonperiod
lattice too. Havinggi at hand enables one to apply the kine
energy theorem as in the single oscillator case and thu
express each velocitydui /dt as a function ofui only. Fur-
ther integration yields timet as a function ofui .

The functionui(t) is assumed to be monotonous versut
for every i inside the rangeT2,t,T1 so that eachui(t)
can be inverted to givet versusui . This ensures that there i
a one-to-one mappingt→ui→ui 11, which in turn warrants
the existence of the functionsgi and gi

21 defined as
ui 11(t)5gi„ui(t)… and ui(t)5gi

21
„ui 11(t)…. In addition, it

is assumed thatui(t50)50 for every i , which entails by
virtue of the definition ofgi that gi(0)5gi

21(0)50. The
system of Eqs.~1! is then recast into

d2ui

dt2
5hi~ui !, hi~x!5 f „gi 21

21 ~x!,x,gi~x!…. ~2!
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57 1135LOCALIZED VIBRATIONS AND STANDING WAVES IN . . .
The kinetic energy theorem is applied to Eq.~2! to yield the
velocity dui /dt:

dui

dt
56Aei„ui~ t !…, ei~x!5~v i !

212E
0

x

hi~y!dy, ~3!

wherev i5(dui /dt)(0) is theinitial velocity of oscillatori .
The differential equation in Eq.~3! is then integrated to give

t56E
0

ui dx

Aei~x!
, ~4!

where 1 or 2 signs refer tot.0 and t,0, respectively.
Since the system of Eqs.~1! is assumed to have a restorin
force, there isai

6 such thatei(ai
6)50. Moreover the follow-

ing value is ascribed toT6:

T65E
0

ai
6 dx

Aei~x!
, T52~T12T2!, ~5!

where T stands for the time period. That the relatio
ei(ai

6)50 andai 11
6 5gi(ai

6) hold for everyi ensures that
the values ofT1,T2,T can be calculated as well by selectin
any i value in Eq.~5!.

Applying Eq. ~4! to i and i 11 gives

E
0

ui dx

Aei~x!
5E

0

ui 115gi ~ui ! dx

Aei 11~x!
. ~6!

Differentiating Eq.~6! with respect toui results in

dui 11

dui
5

dgi

dui
5Aei 11~ui 11!

ei~ui !
, ~7!

where ui 115gi(ui). The system of Eqs.~7! is comple-
mented by a matching equation taken at sitei 50:

du1

du0
5

dg0

du0
5Ae1~u1!

e0~u0!
, h0~x!5 f „g0~x!,x,g0~x!…,

~8!

which ensures thatui(t)5u2 i(t) for every i andt. An addi-
tional matching equation is required in case of a stand
wave:

dun

dun21
5

dgn21

dun21
5A en~un!

en21~un21!
,

hn~x!5 f „gn21
21 ~x!,x,gn~x!…, ~9!

where un2 i(t)5un1 i(t), gn(x)5gn21
21 (x) or un2 i(t)

5un1 i 11(t), gn(x)5x for the wave-lengthsp52n or p
52n11, respectively. The system to be solved reads fina

TABLE I. Vibrational amplitudesai and initial velocitiesv i for
a breather sustained by potentialW1.

i 0 1 2 3 4

ai 8.6665 4.6692 0.39029 2.2326E24 4.1794E214
v i 100 253.876 4.5034 22.5762E23 4.8225E213
g

:

dgi

dui
5Aei 11+gi~ui !

ei~ui !
, i 50,1, . . . ,n, ~10!

where for breathersn is assigned to so big a value th
an

1 ,uan
2u are both smaller than the required accuracy. T

system of first order differential equations~10! is known
to have a single solution$g0 ,g1 , . . . ,gn% if it is integrated
with the initial conditiongi(0)50, ; i . The solution de-
pends implicitly on the set of initial velocities$v i 50,1, . . . ,n%
via the definition of ei(ui) in Eqs. ~3!. Each v i must
be matched such thatdui /dt(T6)50. Because of
dui /dt(T6)5Aei(ai

6) due to Eqs.~3!,~5!, the system of
Eqs. ~10! must be solved under the constraintsei(ai

6)50
andai 11

6 5gi(ai
6) for every i .

III. EXISTENCE CRITERION

The second derivative@d2gi /d(ui)
2#(0) is found to van-

ish for every i . Actually the lowest integerj .1 such that
@djgi /d(ui)

j #(0)Þ0 is equal tok12 wherek is the smallest
integer such that@]kf /](u)k#(0,0,0)Þ0 whereu5x,y, or z
and f (x,y,z) is defined in Eq.~1!. Consequently the exac
identity gi(ui)5dgi /dui(0)ui in the case of a harmonic po
tential remains an excellent approximation for an anh
monic one too, even foruui u as big asuai

6u. Likewise the
relation ui 11(t)5gi„ui(t)… implies that r i5(dgi /dui)(0)
5[dui 11 /dt](0)/[dui /dt](0). Thus the bigger the intege
k, that is, the more anharmonic the potential is, regardles
its magnitude, the less thegi(x)’s deviate from a linear law
gi(x)5r ix, which ensures in particularai 11

6 'r iai
6 . This

feature enables us to recast the integrodifferential system
equations~10! into an equivalent system of ordinary equ
tions:

ẽi~v i ,ai
6!50, i 50,1, . . . ,n, ~11!

where ẽi(v i ,ai
6) is calculated by insertinggi 21

21 (x)
5x/r i 21 , gi(x)5r ix into ei(x) in Eq. ~3! and assuming
v i5r i 21v i 21 , ai

65r i 21ai 21
6 ; the unknowns are a0

6 ,
r i 50,1, . . . ,n21, andv0 is the only disposable parameter.

Because we are interested in a localized mode, tha
uai

6u,uai 21
6 u, Eqs.~11! are solved for a decreasing sequen

$v i 50,1, . . . ,n% such that uv i u,uv i 21u. We use a Newton’s

TABLE II. Vibrational amplitudesai and initial velocitiesv i for
a breather sustained by potentialW2.

i 0 1 2 3 4

ai 0.89182 0.60287 0.10361 5.5163E24 8.2879E211
v i 0.94809 0.62966 0.10607 5.5769E24 8.3565E211

TABLE III. Vibrational amplitudesai and initial velocitiesv i

for a breather sustained by potentialW3.

i 0 1 2 3 4

ai 1.8079 0.36855 7.3857E22 1.4796E22 2.8544E23
v i 3.0512 20.68933 0.1398 22.8039E22 5.4096E23
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1136 57JACOB SZEFTEL AND PASCAL LAURENT
method based iterative procedure starting withn52 and in-
creasingn repeatedly by 1 untiln reaches the value re
quested by Eq.~10!. The values resulting from stepn are
used as estimates to launch iterationn11.

The property thatv i→0 for i→` implies that at large
enoughi one hasur i u!1 and the pair potentialW(ui 21 ,ui)
can be approximated nearui50 by keeping only the leading
power in its Taylor expansion. Writing then the equation
motion ~1! results in

W~ui 21 ,ui !5ui
m2 l 11ui 21

l 1ui
lui 21

m2 l 11⇒ d2ui

dt2

5h~ui !52~m11!
ui

m

r i 21
l

, ~12!

where we takem22l 11<0, ui 11 has been neglected ve
susui because ofur i u!1, ui 21 has been replaced byui /r i 21,
andm is odd for Eq.~12! to secure a restoring force. Inser
ing this expression ofh(ui) into that of ẽi in Eq. ~11! leads
to

~ai
1!m115

v i
2ur i 21u l

2
, uv i u5Uv i 21

l

c2 U1/~ l 112m!

, ~13!

wherec5(A8/T)*0
1dx/A12xm11. Within the limit ur i u!1

where Eqs.~13! are valid, the restoring forcehi(x) in Eq.
~12! is odd with respect tox, which implies thatai

15

2ai
2 . This latter result entails thatT152T2 in Eq. ~5! and

thence T54T1 for every potential V, even though
W(ui 21 ,ui) is not even with respect toui 21 ,ui . It is also
inferred from Eqs.~12! and ~13! that T→0 when uv0u→`,
whereasT is known to be independent ofv0 for a harmonic
potential.

Seeking a decreasing sequence$v i 50, . . . ,n% requires that
m2 l 11.0 and l .0. In addition,l 112m.0 is inferred
from Eqs.~13!. The above inequalities imply thatl 5m and
l .0. Hencem being odd causesl to be odd too. The sough
condition for the existence of integrable breathers and sta
ing waves then states thatthe Taylor expansion of the pai
potential W(ui 21 ,ui) must include the term uiui 21

l where
the integer l.0 is odd.Furthermorev i is seen in Eq.~13! to
behave like v i 21

l . Consequentlyai
6 behaves also like

(ai 21
6 ) l and ai

6 decays exponentially towards zero vers
i→` for l 51 and faster than exponentially forl .1. Given
v0, the above quoted necessary condition may prove not
ficient in two cases:~i! Equation ~11! does not have any
solution $v i 50, . . . ,n%, such that uv i 11u,uv i u; ~ii !
2u*0

xhi(y)dyu has an upper boundvM
2 . Then there is noa0

6 ,
solution ofe0(a0

6)50 for uv0u.uvMu.

TABLE IV. Vibrational amplitudesai and initial velocitiesv i

for a p58 standing wave sustained by potentialW3.

i 0 1 2 3 4

ai 1.808 0.36857 7.3978E22 1.5416E22 5.9476E23
v i 3.0513 20.68937 0.14003 22.9213E22 1.1272E22
f

d-

f-

These conclusions will be now illustrated by several e
amples. As shown in the discussion of Eq.~13!, it is of little
significance whetherW(ui 21 ,ui) is even or not. Therefore i
has been assumed for simplicity to be even in all examp
below, which implies thatai5ai

152ai
2 . Givenv0 in each

studied case, we have solved Eqs.~11! for the unknown am-
plitudesai and initial velocitiesv i .0. In all but one case, the
resulting ai 50, . . . ,n ,v i 51, . . . ,n’s have been then inserted a
estimates into a shooting procedure aimed at solving Eq.~1!
and converging very fast because the solution of Eq.~11!
was close to that of Eq.~10!.

IV. THE l > 1 CASE

Results are given first for the l 53 potential
W1(ui ,ui 11)52(uiui 11

3 1ui
3ui 11). The linear approxima-

tion gi(x)'r ix works so well that the finalai ,v i values are
available with an accuracy better than 10211 right after solv-
ing Eqs.~11!. Due to the steep decay of the vibrational am
plitude observed forl 53 in agreement with Eq.~13!, the
results obtained for the breather and the standing waves
out to differ only at the matching siten54. Therefore the
breather data, reported in Table I, are to be complemente
giving furthermore a458.3588E214, 4.1794E214 and
v459.6449E213, 4.8225E213 for standing waves o
wavelengthsp58 andp59, respectively. The periodT has
been found equal to 0.45448.

In regard to the breather solution for thel 53 potential
W2(ui ,ui 11)5sin(ui)sin3(ui11)1sin3(ui)sin(ui11), the results
are gathered in Table II. The period has been found equa
5.2045. As forW1, these results must be complemented
a451.6576E210, 8.2879E211 and v451.6713E
210, 8.3565E211 for p58 andp59, respectively. But
as u*0

xhi(y)dyu has an upper bound, there is no solution f
v0>2 consistent with the above reservation~ii !. Previous
methods@8,9# break down because no uncoupled oscilla
limit can be defined for the potentialsW1 ,W2. As there is no
harmonic (l 51) term in both potentialsW1 ,W2, this method
proves well suited to studying soft phonon-induced disp
cive transitions@10#.

V. THE l 5 1 CASE

This quasiharmonic case is the major concern of previ
works @1,2,5,9# in that they rely heavily on the presence

TABLE V. Vibrational amplitudesai and initial velocitiesv i for
a p59 standing wave sustained by potentialW3.

i 0 1 2 3 4

ai 1.8079 0.36855 7.3839E22 1.4701E22 2.3774E23
v i 3.0512 20.68932 0.13977 22.7858E22 4.5055E23

TABLE VI. Vibrational amplitudesai and initial velocitiesv i

for a breather sustained by potential FPU.

i 0 1 2 3 4

ai 1.3133 0.56734 7.4399E22 1.2402E22 2.0224E23
v i 21.9288 0.78584 0.14832 2.5147E22 4.1085E23
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57 1137LOCALIZED VIBRATIONS AND STANDING WAVES IN . . .
traveling phonons. A typical pair potential read
W3(ui ,ui 11)5@l(ui2ui 11)21ui

41ui 11
4 #/4. The calcula-

tion has been done withl51. The period has been found t
be equal to 3.3153. Consistent with Eq.~13!, the vibrational
amplitude decays more smoothly than in thel 53 case, the
matching equation in Eq.~9! causes the results, given i
Tables III, IV, and V for the breather and thep58 andp
59 standing waves, respectively, to differ slightly from o
another.

The presence of a traveling phonon band, typical of
harmonic limit, entails that the existence of a solution of E
~11! is still more severely restricted than for thel .1 case.
Calculatinge0(x) andT for W3 yields

v0
25l~11r 0!a0

21a0
4 ,

T54E
0

a0 dx

A~v0
22l~11r 0!x22x4!/2

, ~14!

whereu152r 0u0 and 0,r 0,1. Becauseai→0 for i→`,
the anharmonic termui

4 becomes negligible and the ha
monic case is retrieved, i.e.,ui 1152r `ui where 0,r `,1
is independent ofi . In additionr ` andT are related by

S 2p

T D 2

5
l

2S r `1
1

r `
12D . ~15!

At large enoughuv0u, thea0
4 term in Eq.~14! overwhelms the

a0
2 one, so thatT increases ifuv0u is taken to decrease at fixe

l. But Eq. ~15! sets an upper boundT<TM5pA2/l where
1/TM is the highest traveling phonon frequency. Moreov
decreasinguv0u causesa0 to decrease too anda0

4 becomes
eventually negligible versusa0

2, so that we are brought bac
to the harmonic case, which cannot sustain any solution
Eqs. ~10!. Finally for decreasinguv0u, any localized mode
either breather or standing wave, is bound to vanish wheT
reaches its maximum valueTM , that is, no solution of Eqs
~10! can be degenerate with a traveling phonon. This
plains why in a previous work@9# the search for a breathe
failed eventually while increasingT or equivalently decreas
ing uv0u. Similarly if l increases at fixedv0, the localized
mode disappears too because the harmonic regime is res
at large enoughl.

TABLE VII. Vibrational amplitudesai and initial velocitiesv i

for a p58 standing wave sustained by potential FPU.

i 0 1 2 3 4

ai 1.3133 0.56737 7.4458E22 1.276E22 4.1614E23
v i 21.929 0.78596 0.14845 2.5876E22 8.4543E23
e
.

,

of

-

red

We focus finally on the Fermi-Pasta-Ulam~FPU! poten-
tial, which belongs in thel 51 type and has attracted rece
interest@3,9#. In both works the traveling phonons availab
in the harmonic limit are used as a prerequisite to fi
breathers and standing waves and to analyze their stab
Therefore we turn to a peculiar version of the FPU poten
W4(ui ,ui 11)52(ui2ui 11)2/21(ui2ui 11)4/4, which can-
not sustain any traveling phonon because there is no re
ing force in the harmonic limit. Hence this case is well ou
side the purview of previous work@3,9#. Nevertheless
because it satisfies the existence criterion quoted ab
breathers and standing waves may still arise as induced
anharmonicity provideduv0u or equivalently a0 is high
enough so thatW4 gives rise to a finite restoring force an
the period is smaller than some upper boundTM . The period
has been computed to be equal to 3.0919, 3.0917, 3.0918
other results are reported in in Tables VI, VII, and VIII fo
the breather and thep58 andp59 standing waves, respec
tively. As in theW1 ,W2 cases, anharmonicity is seen to r
store dynamical stability in an unstable lattice in the h
monic limit. This emphasizes the drawbacks of the stabi
analysis in the harmonic approximation@3,9,11#.

VI. CONCLUSION

Regardless of whether the uncoupled oscillator limit
available or the crystal is stable in the harmonic limit, eve
anharmonic potential may sustain infinitely many breath
and standing waves provided it fulfills the above stated
terion with respect tol being odd. Each vibrational mode i
completely determined by a single parameter, e.g., the in
velocity v0 at an arbitrary site. In thel 51 case a vibrationa
mode may arise only for high enoughuv0u, which gives rise
to a forbidden gap forT.TM . These conclusions have bee
achieved by looking for the functionsgi(x) such thatui 11
5gi(ui) andgi(x) deviates very little fromgi(x)5r ix even
though the potential is strongly anharmonic. This promin
property has enabled us to derive an existence criterion
addition, it offers a practical tool to assess the integra
vibrational modes. As it sheds new light on the significan
of lattice stability, it also paves the way for investigatin
anharmonicity driven instabilities@10#.
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TABLE VIII. Vibrational amplitudesai and initial velocitiesv i

for a p59 standing wave sustained by potential FPU.

i 0 1 2 3 4

ai 1.3133 0.56735 7.441E22 1.247E22 2.4299E23
v i 21.9289 0.78587 0.14835 2.5286E22 4.9365E23
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