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Localized vibrations and standing waves in anharmonic lattices
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A sequence of nonlinear, time-dependent second order differential equations describing the motion of an
infinite one-dimensional periodic lattice of arbitrary anharmonicity is considered. It is converted to an equiva-
lent time-independent integrodifferential system, solved for all localized vibrational modes and standing
waves. As illustrated by several examples this approach provides an accurate and efficient computational tool.
An existence criterion to be satisfied by the potential is worked out for the considered vibrational modes.
[S1063-651X98)05001-9

PACS numbgs): 03.20+i, 63.20.Pw, 63.20.Ry

I. INTRODUCTION wheret stands for time. Breathers and standing waves are
characterized respectively by;—0, Vt for i—o and
Unlike a harmonic, spatially periodic lattice, an anhar-u;_ ,(t)=u;(t), Vi,t where the integerp denotes the
monic one can sustain breathers, that is, time-periodic, spavave-lengthW(u; ,u; ;) is chosen so thdt(x,y,z) has one
tially localized vibrational modes even without broken peri- equilibrium position atx=y=z=0, which entails that
odicity. Breathers and standing waves experience currently 0,0,0)=0. The vibrational amplitude of oscillatéris as-
budding interest because they are believed to be mstrumentgigned toa; >0,a <0, i.e., the velocitydu; /dt vanishes

in energy localization or equipartition and heat trangfier henu: reaches the values® . This work is concerned with
4]. The problem has been mostly tackled from a classical” o & - + -
81II vibrational modes, such that=0, u;=3a;", andu;=g,

point of view but a quantum mechanical treatment has als N a i i
been published5]. at t=Q, t=T _ >Q andt=T _<0 for everyi, respectively.
As the KAM theorem is ill suited here because it producesEquation (1) is time reversible, i.e., neither nor du; /dt
many, rather than single, time period solutions, early atappear explicitly therein. Consequentlyy;(2T~—1)
tempts have resorted to approximate expansjéng. Sig- =u;(t), Vi,t. It suffices thence to confine oneself to the
nificant progress was achieved when the existence of breathange T~ <t<T™". As the lattice is periodicf(x,y,z) does
ers could be provefB] in the uncoupled oscillator limit and not exhibit any explicii dependence. If(x,y,z) were linear
the method was turned into a practical tp®]. However, the in X,y,z, thanks to the Bloch-Floquet theorem the relation
problem of the existence of breathers remains unsolved in; . 1(t)=ru;(t) would hold for anyt wherer is generally a
the general case, i.e., for plenty of models where no uneomplex number. Thus;,; can be expressed as a function
coupled oscillator limit is available. of u; by dropping anyt dependence. The present work ex-
The method presented here affords the determination dbnds this result to the nonlinear case by looking for the
all breathers and standing waves for the most general anhaunknown functiong; defined so thati; , ;=g;(u;). The main
monic potential. The key point is to work out the restoring difference with the linear case is thgtdepends explicitly on
force at each site as a function of the displacement at this sitg unlike the Bloch phase shift, even though the lattice is
only, which means that integrable modes of the anharmoniperiodic but the following analysis is valid for a nonperiodic
model are achieved in this way. Not only does this providdattice too. Havingg; at hand enables one to apply the kinetic
the frequency and the vibrational amplitude at every site foenergy theorem as in the single oscillator case and thus to
all integrable breathers and standing waves but it also erexpress each velocitgy; /dt as a function ofu; only. Fur-
ables us to work out an existence condition to be obeyed byher integration yields timé as a function ol; .
the potential for these vibrational modes to arise. The functionu;(t) is assumed to be monotonous versus
for everyi inside the rangd ~<t<T* so that eachu;(t)
can be inverted to giveversusu; . This ensures that there is
a one-to-one mappint— u;— U;, 1, which in turn warrants
Let us consider an infinite chain of oscillators coupled bythe existence of the functiong; and g; * defined as
a pair potentialV=;W(u; ,u; ;) whereu; designates the u;_ ,(t)=g;(u;(t)) and u;(t)=g; *(u;,1(t)). In addition, it
displacement of sité andi takes all positive and negative is assumed that;(t=0)=0 for everyi, which entails by
integer valuesW(u; ,uj ;1) is assumed to be symmetric with virtue of the definition ofg; that g;(0)=g; }(0)=0. The
respect tou; andu;.; but is otherwise an arbitrary anhar- system of Eqs(1) is then recast into
monic function. The equations of motion read

Il. THE METHOD

d?u; AV d’u; i1
F__Tui_f(uiflauivuwl)v 1 F_hi(ui)y hi(x)=f(g;=1(x),X,8i(X)). (2
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TABLE I. Vibrational amplitudesa; and initial velocitiesy; for
a breather sustained by potentidl .

1135

TABLE II. Vibrational amplitudesa; and initial velocitiesy; for
a breather sustained by potentié).

i 0 1 2 3 4 i 0 1 2 3 4
a; 8.6665 4.6692 0.39029 22364 4.179£-14 a; 0.89182 0.60287 0.10361 55134 8.287E-11
v; 100 —53.876 4.5034 —-2576E—-3 4.822%&-13 v; 0.94809 0.62966 0.10607 5594 8.356FE—11

The kinetic energy theorem is applied to EB) to yield the
velocity du; /dt:

du . B ) x
T ei(ui(t), e(x)=(vy) +2f0hi(y)dy, ©)

wherev;=(dy; /dt)(0) is theinitial velocity of oscillatori.
The differential equation in Eq3) is then integrated to give

t_*‘jUi dx
o a0’

where + or — signs refer tot>0 andt<0, respectively.

(4)

dg

d_Ui =0,1,...n,

[€i+1°0i(U;)
g(u) 19

where for breathers is assigned to so big a value that
a. ,|a;| are both smaller than the required accuracy. The
system of first order differential equatiori&0) is known
to have a single solutiofigy,g4, - - - .gn} if it is integrated
with the initial conditiong;(0)=0, Vi. The solution de-
pends implicitly on the set of initial velocitief); o1 .. p}
via the definition of e;(u;) in Egs. (3). Each v; must
be matched such thatdu;/dt(T*)=0. Because of
du, /dt(T*)=e(a") due to Egs.(3),(5), the system of

Since the system of Eqél) is assumed to have a restoring Egs. (10) must be solved under the constraimga;")=0

force, there is;” such thak;(a;") =0. Moreover the follow-
ing value is ascribed 13

T=2(T"-T7), (5

-I-t:jair dX
o Je(x)'

where T stands for the time period. That the relations:

e/(a;")=0 anda; ,=gi(a;") hold for everyi ensures that

the values off*,T~, T can be calculated as well by selecting

anyi value in Eq.(5).
Applying Eq.(4) toi andi+1 gives

f Upr=gi(u)  dx ®
IR
Differentiating Eq.(6) with respect tau; results in
dUi+1:%: /€ +1(Uj+1) 7)
du  duy; e(u)

where u;, ;=g;(u;). The system of Eqs(7) is comple-
mented by a matching equation taken at &iteD:

du;
duo

e;(uy)
€o(Up)’

_9%_
dug

ho(x) =f(go(X),X,90(X)),
8

which ensures that;(t)=u_;(t) for everyi andt. An addi-

tional matching equation is required in case of a standmg};a |<|a*

wave:
du, dgy i \/W
dup—; dup_g €n-1(Up-1)’
ha(¥) = (g2 1(X),X,9n(X)), 9
where Up () =Unsi(t), gn(¥)=0,"1(¥) or Uy i(t)

=Up+ir1(t), gn(x)=x for the wave-lengthp=2n or p

=2n+1, respectively. The system to be solved reads finally:

anda;;;=g;(a;") for everyi.

lIl. EXISTENCE CRITERION

The second derivatived?g; /d(u;)?](0) is found to van-
ish for everyi. Actually the lowest integej>1 such that
[dig;/d(u;)1]1(0)+#0 is equal tk+ 2 wherek is the smallest
integer such thatd*f/a(u)¥](0,0,0)# 0 whereu=x,y, or z
and f(x,y,z) is defined in Eq(1). Consequently the exact
identity g;(u;)=dg; /dy;(0)u; in the case of a harmonic po-
tential remains an excellent approximation for an anhar-
monic one too, even foju;| as big as|a;"|. Likewise the
relation u;, ,(t)=g;(u;(t)) implies thatr;=(dg;/du;)(0)
=[du;,,/dt](0)/[duy;/dt](0). Thus the bigger the integer
k, that is, the more anharmonic the potential is, regardless of
its magnitude, the less thg(x)’s deviate from a linear law
gi(x)=r;x, which ensures in particulaa-. ;~r;a;". This
feature enables us to recast the integrodifferential system of
equations(10) into an equivalent system of ordinary equa-
tions:

e(v;,a")=0, i=01,...n (12)

where €(v;,a") is calculated by insertingg;_%(x)
=x/ri_1, gi(X)=r;x into g(x) in Eq. (3) and assuming
Vi=ri_1vi_1, & = ,a—,; the unknowns area,,
li—o1,...n—1, @andvg is the only disposable parameter.

Because we are interested in a localized mode, that is,
1|, Egs.(11) are solved for a decreasing sequence
{vio1, ... n} such that|vi|<|vi_4|. We use a Newton’s

TABLE lIl. Vibrational amplitudesa; and initial velocitiesv;
for a breather sustained by potenti.

i 0 1 2 3 4

1.479€—-2 2.854£-3
—2.803E—-2 5.409€—-3

a; 1.8079 0.36855 7.38%kF~2
v; 3.0512 —0.68933 0.1398
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TABLE IV. Vibrational amplitudesa; and initial velocitiesv; TABLE V. Vibrational amplitudes; and initial velocitiesy; for
for a p=8 standing wave sustained by potentids. a p=9 standing wave sustained by poteniié.
i 0 1 2 3 4 i 0 1 2 3 4

a; 1.808 0.36857 7.39B-2 1.541€&—-2 5.947€&—-3 a; 1.8079 0.36855 7.3889-2 1470E—-2 2377£-3
v; 3.0513 —0.68937 0.14003 —2.921F-2 1.127E-2 v; 3.0512 —0.68932 0.13977 —2.785& -2 4.505%&-3

method based iterative procedure starting wita2 and in- These conclusions will be now illustrated by several ex-
creasingn repeatedly by 1 untin reaches the value re- amples. As shown in the discussion of E3), it is of little
quested by Eq(10). The values resulting from step are  significance whetheW(u; _,,u;) is even or not. Therefore it
used as estimates to launch iteratioh 1. has been assumed for simplicity to be even in all examples
The property thab;—0 for i—c implies that at large below, which implies tha;=a;"= —a; . Givenuv, in each
enoughi one hagr;|<1 and the pair potentiaV(u;_,,u;)  Studied case, we have solved E(kl) for the unknown am-
can be approximated neay=0 by keeping only the leading plitudesa; and initial velocities; . In all but one case, the
power in its Taylor expansion. Writing then the equation ofresultinga;_o . . n,vi—1,. . n'S have been then inserted as

motion (1) results in estimates into a shooting procedure aimed at solving(Bq.
and converging very fast because the solution of @4)
d2y; was close to that of Eq10).
W(Ui—g,up) =0t ™y s —
dt IV. THE | > 1 CASE
—h(u)= —(m+ 1)|_|’ (12) Results are given first for thel=3 potential

Wy (U, Ui 1) =—(uu’, ,+u’u;,,). The linear approxima-
tion g;(x)~r;x works so well that the fina; ,v; values are
where we takan— 21+ 1<0, u,,; has been neglected ver- available with an accuracy better than tBright after solv-
susu; because ofr;|<1, u;_, has been replaced hy/r;_;, ing Egs.(11). Due to the steep decay of the vibrational am-

andm is odd for Eq.(12) to secure a restoring force. Insert- Plitude observed fot=3 in agreement with Eq(13), the
. . . . ~ results obtained for the breather and the standing waves turn
ing this expression adfi(u;) into that ofe; in Eq. (11) leads

to out to differ only at the matching site=4. Therefore the
breather data, reported in Table I, are to be complemented by
U(1+1-m) giving furthermorea,=8.358& —14, 4.179&4-14 and
(13) v4=9.644F—-13, 4.822k—13 for standing waves of
' wavelengthp=8 andp=9, respectively. The period has
been found equal to 0.45448.
wherec=(\/§/T)f(1)dx/\/WI. Within the limit |r;|<1 In regard to_the b_reather so_Iution _for the 3 potential
where Egs(13) are valid, the restoring forch;(x) in Eq.  Wa(Ui Ui+1) = Sin()Sir(ui1) +sir(u)sin(u 1), the results
(12) is odd with respect tax, which implies thata’ = are gathered in Table Il. The period has been found equal to
—a~ . This latter result entails that* = — T~ in Eq. (5) and 5.2045. As forW,, these results must be complemented by
thence T=4T" for every potential V, even though a,=1.657€ 10, 8f'287'f_11 _and 04_.1'6|71$
W(u;_1,u;) is not even with respect ta;_,,u;. It is also _10;( 8.356% — 11 for p=8 andp=9, respectively. But
inferred from Eqgs(12) and (13) that T—0 when|v o|— e, as|fghi(y)dy| has an upper bound, there is no solution for

whereasT is known to be independent of, for a harmonic vg=2 consistent with the above reservatian. Previogs
potential methods[8,9] break down because no uncoupled oscillator

; ; ; limit can be defined for the potential§, ,W,. As there is no
Seeking a decreasing sequerog- requires that . ; L T2 .
m—|+1>go and!>0. Ingadd?tiorlf,le;%'—' rr;io ?s inferred  narmonic (= 1). term in both_potenhalWl,WZ,.thls methqd
from Eqgs.(13). The above inequalities imply thatm and proves well suited to studying soft phonon-induced displa-

I>0. Hencem being odd causdsto be odd too. The sought cive transition10].
condition for the existence of integrable breathers and stand-
ing waves then states thtte Taylor expansion of the pair

potential W(u;_y,u;) must include the term;u;_, where This quasiharmonic case is the major concern of previous

the integer >0 is odd.Furthermorey; is seen in Eq(13) o works[1,2,5,9 in that they rely heavily on the presence of
behave likev!_,. Consequentlya” behaves also like

(a”,)' anda® decays exponentially towards zero versus TABLE VI. Vibrational amplitudesa; and initial velocities;
i—oo for |=1 and faster than exponentially for-1. Given ~ for @ breather sustained by potential FPU.

v, the above quoted necessary condition may prove not suf=
ficient in two cases{i) Equation(11) does not have any ' 0 1 2 3 4
solution {vi—o . o, such that [visq|<[vil; (i) a 13133 056734 7.438-2 1.240E-2 2.022£-3

2| Johi(y)dy] has an upper bounef, . Then there isn@g ,  ,, 19288 0.78584 0.14832 251872 4.108E-3
solution ofeg(ag) =0 for |vg|>|v |-

li—1

+ m+1_Ui2|ri—l|| _ vi_;
(ai ) - 2 ' | i|_ C2

V.THE | = 1 CASE
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TABLE VII. Vibrational amplitudesa; and initial velocitiesv;
for a p=8 standing wave sustained by potential FPU.

TABLE VIII. Vibrational amplitudesa; and initial velocities;
for a p=9 standing wave sustained by potential FPU.

i 0 1 2 3 4 i 0 1 2 3 4

a; 1.3133 0.56737 7.44%8-2 127€&—-2 4.161&£-3 a; 13133 0.56735 7.44-2 124E-2 2429€-3
vi —1.929 0.78596  0.14845 25862 8.454%-3 vi —1.9289 0.78587 0.14835 252862 4.936%&-3
traveling phonons. A typical pair potential reads e focus finally on the Fermi-Pasta-UlafiPU) poten-

Wa(Uj Ui+ 1) =[N (U= Ui 1)+ ui+ut, 1 J/4. The calcula-  tial, which belongs in thé=1 type and has attracted recent
tion has been done with=1. The period has been found to interest[3,9]. In both works the traveling phonons available
be equal to 3.3153. Consistent with Eg3), the vibrational  in the harmonic limit are used as a prerequisite to find
amplitude decays more smoothly than in the3 case, the breathers and standing waves and to analyze their stability.
matching equation in Eq(9) causes the results, given in Therefore we turn to a peculiar version of the FPU potential
Tables 1lI, IV, and V for the breather and the=8 andp  W,(u;,u;, )= — (U;— U;41)%/2+ (u;—u;;)*/4, which can-
=9 standing waves, respectively, to differ slightly from onenot sustain any traveling phonon because there is no restor-
another. ing force in the harmonic limit. Hence this case is well out-
The presence of a traveling phonon band, typical of theside the purview of previous work3,9]. Nevertheless
harmonic limit, entails that the existence of a solution of Eqshecause it satisfies the existence criterion quoted above,

(12) is still more severely restricted than for the-1 case.
Calculatingey(x) and T for W, yields

v2=N(1+rg)a+al,

dx

ap
T_4Jo V3= N(L+r)x2—xH/2’ s

whereu; = —rgug and 0<ry<1. Becausey;—0 for i—o,
the anharmonic terrmi4 becomes negligible and the har-
monic case is retrieved, i.eu;, ;= —r.Uu; where 0<r,<1

is independent of. In additionr., and T are related by

2 2_)\
T 2

At large enoughu |, theag term in Eq.(14) overwhelms the
aZ one, so thal increases ifv| is taken to decrease at fixed
\. But Eq.(15) sets an upper bounfi<Ty = 72/A where

—+2].

o

reo+ (15

breathers and standing waves may still arise as induced by
anharmonicity providedjvy| or equivalently a; is high
enough so thaw, gives rise to a finite restoring force and
the period is smaller than some upper bolnRgd. The period

has been computed to be equal to 3.0919, 3.0917, 3.0918 and
other results are reported in in Tables VI, VII, and VIII for
the breather and the=8 andp=9 standing waves, respec-
tively. As in theW;,W, cases, anharmonicity is seen to re-
store dynamical stability in an unstable lattice in the har-
monic limit. This emphasizes the drawbacks of the stability
analysis in the harmonic approximati¢®,9,11].

VI. CONCLUSION

Regardless of whether the uncoupled oscillator limit is
available or the crystal is stable in the harmonic limit, every
anharmonic potential may sustain infinitely many breathers
and standing waves provided it fulfills the above stated cri-
terion with respect td being odd. Each vibrational mode is
completely determined by a single parameter, e.g., the initial
velocity vg at an arbitrary site. In the=1 case a vibrational
mode may arise only for high enoug|, which gives rise
to a forbidden gap fol >T), . These conclusions have been
achieved by looking for the functiong(x) such thatu;, ;

1/T,, is the highest traveling phonon frequency. Moreover,=g;(u;) andg;(x) deviates very little frormg;(x) =r;x even
decreasindu,| causesa, to decrease too andj becomes though the potential is strongly anharmonic. This prominent
eventually negligible versuaj, so that we are brought back Property has enabled us to derive an existence criterion. In
to the harmonic case, which cannot sustain any solution o®ddition, it offers a practical tool to assess the integrable
Egs. (10). Finally for decreasindv,|, any localized mode, V|brat|pnal moq_es. As it sheds new light on thg S|gn!f|cqnce
either breather or standing wave, is bound to vanish when Of lattice stability, it also paves the way for investigating
reaches its maximum valuBy, , that is, no solution of Eqs. anharmonicity driven instabilitiefl 0].

(10) can be degenerate with a traveling phonon. This ex-
plains why in a previous work9] the search for a breather
failed eventually while increasing or equivalently decreas-
ing |ve|. Similarly if \ increases at fixed, the localized One of us(J.S) would like to thank Rachel Szeftel, rde
mode disappears too because the harmonic regime is restoremiie Szeftel, and Judith Szeftel for providing invaluable en-
at large enough. couragement and criticism.
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